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A parallel finite-difference approach for 3D transient
electromagnetic modeling with galvanic sources

Michael Commer1 and Gregory Newman2

ABSTRACT

A parallel finite-difference algorithm for the solution
of diffusive, three-dimensional (3D) transient electro-
magnetic field simulations is presented. The purpose
of the scheme is the simulation of both electric fields
and the time derivative of magnetic fields generated by
galvanic sources (grounded wires) over arbitrarily com-
plicated distributions of conductivity and magnetic per-
meability. Using a staggered grid and a modified DuFort-
Frankel method, the scheme steps Maxwell’s equations
in time. Electric field initialization is done by a conjugate-
gradient solution of a 3D Poisson problem, as is common
in 3D resistivity modeling. Instead of calculating the ini-
tial magnetic field directly, its time derivative and curl are
employed in order to advance the electric field in time.
A divergence-free condition is enforced for both the
magnetic-field time derivative and the total conduction-
current density, providing accurate results at late times.
In order to simulate large realistic earth models, the al-
gorithm has been designed to run on parallel computer
platforms. The upward continuation boundary condi-
tion for a stable solution in the infinitely resistive air
layer involves a two-dimensional parallel fast Fourier
transform. Example simulations are compared with an-
alytical, integral-equation and spectral Lanczos decom-
position solutions and demonstrate the accuracy of the
scheme.

INTRODUCTION

Solving 3D transient electromagnetic (TEM) problems is im-
portant in understanding the effects of multidimensional con-
ductivity structures. As data quality and quantity arising from
TEM surveys have tended to increase together with compu-
tational capabilities, routine interpretation is becoming more
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and more multidimensional in character. This is also preferable
in order to enable multidisciplinary interpretation approaches
as a means to achieve an earth model with minimum ambiguity.

TEM methods provide very useful additional information
for exploration problems associated with oil exploration, geo-
logical hazards, and hydrological investigations (Strack, 1992).
Shallow exploration typically involves TEM systems that em-
ploy loops as transmitting antennas with an inductive coupling
to the earth. Such systems can be deployed rapidly and more
easily than grounded wires. The grounded wire is a more com-
plex source. However, it is often used in deep soundings be-
cause the field falls off less rapidly at large distances and gener-
ation of adequate field levels is difficult with loop sources (Spies
and Frischknecht, 1991). The long-offset TEM (LOTEM) tech-
nique typically uses a long grounded wire for deep crustal stud-
ies (Hördt et al., 1992, 2000b; Thern et al., 1996; Mitsuhata
et al., 2002), but additional complexities arise with such field
sourcing. The typical transmitter lengths and receiver distances
often do not allow the grounded wire to be approximated by
a mathematical dipole or infinite line source, and the galvanic
nature of the source must be considered in the interpretation
of the data.

Finite-difference (FD) methods have been used extensively
due to their simplicity in solving 2D and 3D time-domain mod-
eling problems. Goldman and Stoyer (1983) addressed the
modeling of transients in a simplified axially symmetric media
with an implicit and 2D formulation. A simulation of TEM sur-
veys over thin 2D vertical conductors embedded in a half-space
with overburden is described by Oristaglio and Hohmann
(1984). Their numerical method for solving the 2D transverse
electric mode of Maxwell’s equations is based on an explicit
FD scheme originally proposed by DuFort and Frankel (1953)
and generalized to inhomogeneous models and grids with an
irregular spacing. For 3D field simulation, Druskin and Knizhn-
erman (1988) developed a spectral differential-difference tech-
nique, where the differential equations are solved using a FD
staggered-grid scheme invented earlier by Yee (1966). This
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scheme preserves the flux conditions on current density and
magnetic induction fields, which is critical in 3D field simu-
lation. Wang and Hohmann (1993) presented an explicit 3D
FD scheme for loop sources that also employs a staggered
grid. Their scheme uses a modification of the DuFort-Frankel
method and incorporates analytical impulse response solutions
for an assumed homogeneous earth model as initial conditions.

In this paper, we present a FD scheme for the simulation of
fields generated by galvanic sources. Although the basis of our
method is the FD scheme presented by Wang and Hohmann
(1993), our scheme differs from their solution in some impor-
tant key aspects. First, the initial conditions are computed for
an arbitrarily geological media. This involves the solution of a
3D Poisson problem prior to the time-stepping process in order
to treat the presence of a static dc electric field caused by the
galvanic source. We are thus able to effectively simulate the
step response of the electric field because the earth is a lossy
medium. At the earliest times, however, this is not the case
because our discrete model cannot support the high-frequency
content of the step waveform. Nevertheless, the high-frequency
content damps out rapidly with time, and is not needed for ac-
curate field simulation over the time range of interest. Because
only electric fields and the time derivative of the magnetic in-
duction are typically measured with grounded-wire TEM sys-
tems, we wish to avoid the additional computation of a magne-
tometric resistivity (MMR) problem (Edwards and Nabighian,
1991; Haber, 2000). Otherwise, this would be required for the
calculation of the initial static magnetic field. It will be outlined
how we work only with the time derivative of the magnetic in-
duction and the curl of the magnetic field in order to advance
the electric field. Second, we enforce a divergence-free condi-
tion on both the magnetic induction time derivative and the to-
tal conduction current density to ensure accurate results at late
times. Finally, to address the inherently large computational ef-
fort of explicit time-stepping solutions, the algorithm has been
designed to run on distributed computer platforms. This in-
volves a message passing scheme that is different from the FD
scheme for frequency-domain forward modeling (Alumbaugh
et al., 1996; Newman and Alumbaugh, 1997) and will be dis-
cussed at length in the parallel implementation section of the
paper.

METHOD

In order to simulate the propagation of the total electric field
intensity e = e(r, t), the magnetic field h= h(r, t) and the mag-
netic induction b= b(r, t) as a function of the position vector
r= (x, y, z) and time t , we review Maxwell’s equations in the
time domain:

∇ × e+ ∂b
∂t
= 0, (1a)

∇ × h− σe− ε ∂e
∂t
= js, (1b)

where b=µh, and σ,µ, and ε are the conductivity, magnetic
permeability, and permittivity of the 3D heterogeneous me-
dia, respectively. The primary electric current density js is im-
pressed by the transmitting source. It is quantified by the elec-
tric current per unit volume, I , integrated along the extent L
of the line source:

js =
∫

L
I [1− H(t)]dl,

where H(t) is the Heaviside step function. Signal generation
takes place by shutting off the initially steady current through
the finite-dimensional line source.

Method of discretization in time

Following Wang and Hohmann (1993), we use a scheme
that employs a staggered-grid (Yee, 1966) in conjunction with
a modified version of the DuFort-Frankel method (DuFort
and Frankel, 1953; Oristaglio and Hohmann, 1984) for time-
stepping equations 1. The DuFort-Frankel method is explicit,
because each equation of the equation system gives one of the
field unknowns un+1 at a time (n+ 1)1t directly in terms of
known quantities un from an earlier time step n1t (Richtmyer
and Morton, 1967). The set of equations 1 represents wave phe-
nomena, while over longer times the field obtains a diffusive
nature due to the domination of low frequencies. Therefore,
the equations are very stiff in time (Ascher and Petzold, 1998)
and thus require very small time steps 1t to retain stability
with an explicit method (Haber et al., 2002). Implicit meth-
ods are more suitable if displacement currents are negligible
because such schemes provide accurate results for larger time
steps. In contrast to explicit schemes, a set of simultaneous
linear equations is solved to obtain un+1, which requires ma-
trix inversions at each time step. Examples for implicit meth-
ods are Crank-Nicolson or the backward-difference method
(Lapidus and Pinder, 1982; Goldman and Stoyer, 1983; Ascher
and Petzold, 1998).

It is beyond the scope of this paper to exemplify a comparison
of explicit versus implicit methods in terms of computational
efficiency. We are aware that the inherently high computational
effort of the explicit scheme remains a major drawback, but this
can be mitigated using the modified DuFort-Frankel method.
This method is also easy to implement and is stable, and one
does not have to deal with problems arising from the inversion
of large linear systems. An explicit scheme is also extremely re-
liable for producing accurate results over a large dynamic time
range (10−7 to 1 s), necessary for inverse modeling problems
(Commer, 2003; Newman and Commer, 2004).

Method of discretization in space

An earth model is represented by a 3D Cartesian mesh
of rectangular cells. Complicated underground structures can
then be modeled by assigning different electrical and magnetic
properties to the grid cells. The staggered grid provides an ac-
curate scheme for the discretization of the above equations on
the 3D mesh. As shown in Figure 1, electric fields are sampled
on cell edges and magnetic fields on the center of cell faces.
This is useful for the discretization of the curl operations. El-
ementary electric loops are formed by the four components
surrounding a face of a grid cell (Figure 1a), and are required
for the calculation of the corresponding magnetic field with
normal orientation. Each electric field component in turn is
surrounded by an elementary loop of four magnetic compo-
nents as shown by Figure 1b and exemplified by the dashed
rectangle around ex . Each electric field Cartesian component
is assigned to a directional conductivity that is evaluated by av-
eraging the conductivities of the four prisms on a particular cell
edge. A weighting function evaluated as the ratio of the area of
a particular prism cut by the magnetic loop to the total area of
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the loop is employed (Wang and Hohmann, 1993). Similarly,
the magnetic permeability is averaged geometrically across the
cell faces to correspond to the location of the magnetic fields
(Alumbaugh et al., 1996).

Figure 1. The 3D staggered grid as used for discretizing
Maxwell’s equations. (a) Electric fields are sampled on cell
edges, (b) magnetic fields are sampled on cell faces, (c) the
field coupling that is used to enforce vanishing divergence for
both magnetic induction (including its time derivative) and
total conduction current. The figure also illustrates the com-
munication scheme for the parallel field update. Node (i, j, k)
has assigned to it electric fields ex(i + 1

2 , j, k), ey(i, j + 1
2 , k),

and ez(i, j, k + 1
2 ) and magnetic fields hx(i, j + 1

2 , k + 1
2 ),

hy(i + 1
2 , j, k+ 1

2 ), and hz(i + 1
2 , j + 1

2 , k), including their cor-
responding time derivatives. See text for additional details re-
garding the parallel field update.

Note that typical grounded-wire TEM equipment uses re-
ceiver loops for measuring the time derivative of the magnetic
field. Instead of magnetic fields, we thus focus on the simu-
lation of magnetic induction time derivative measurements ḃ
in addition to electric fields. This allows avoiding the numeri-
cal and rather elaborate calculation of the static magnetic field
prior to source shutoff, which would involve a MMR problem.
Stepping forward in time is thus also based on ḃ instead of h.
Our scheme involves calculating the curl of the magnetic field
directly from ḃ in order to advance the electric field, as will
be further clarified by the description of the updating scheme.
Note, that on the staggered grid, the components of ḃ are sam-
pled like magnetic fields.

Stability considerations

For the treatment of TEM fields, the diffusive approxima-
tion of equations 1 (i.e., without displacement currents) needs
to be considered. However, the DuFort-Frankel method is ac-
tually realized by introducing a hyperbolic displacement term
ε̃ ∂e
∂t to the diffusion equation, which is also referred to as a mod-

ified DuFort-Frankel version by Wang and Hohmann (1993).
Hence, the displacement term in equation 1b now represents
an artificial add-on with a fictitious permittivity ε̃, and we solve
a system which is consistent with the damped wave form. It can
be shown that with the DuFort-Frankel method this system is
unconditionally stable, provided the Courant-Friedrichs-Levy
condition is satisfied (Oristaglio and Hohmann, 1984; Adhid-
jaja and Hohmann, 1989):

1√
µε̃
≤ 1√

3

1

1tn
, (2)

where 1 represents the grid spacing and 1tn the variable time
step. The artificial permittivity can be orders of magnitude
larger than that observed for nonpolarizable earth materials,
thereby allowing for a much coarser time sampling of the fields.
From equation 2, one obtains

ε̃ ≥ 3
µmin

(
1tn
1min

)2

, (3)

where1min is the smallest FD grid spacing andµmin is the mini-
mum magnetic permeability of a given earth model. Neverthe-
less, equation 3 indicates that the time step has to be bounded
in order to avoid a dominating displacement current. This can
also be expressed as follows. If both 1t and 1 are gradually
enlarged with the attenuation of high-frequency components
of the EM field, the term1t2/12 has to vanish with progressing
time in order for the modified DuFort-Frankel method to be
consistent with the diffusion equation (Richtmyer and Morton,
1967). In practice, we choose the initial time step1t0 such that
the domination of diffusion after the earliest time t of the sim-
ulated measurements is valid (Oristaglio and Hohmann, 1984;
Adhidjaja and Hohmann, 1989):

1t0 ¿
√
µminσmint

6
1min, (4)

where σmin is the minimum value of an arbitrary conductivity
structure.

Another important issue for stability is the explicit enforce-
ment of a vanishing divergence for both the time derivative
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of the magnetic induction and the total conduction current
density:

∇ · ḃ = 0, (5a)

∇ · j = 0. (5b)

As will be further clarified by the description of the updating
scheme, the avoidance of an explicit calculation of magnetic
fields requires that both these divergence-free conditions be
enforced in order to get stable results at late times. Outlined in
more detail by Wang and Hohmann (1993), the enforcement
avoids distorting arbitrary gradient fields that can creep into
the EM field simulation at later times.

Boundary conditions

The staggered grid allows enlarging the spacings of the grid
nodes with increasing offset from the source position. We thus
simply extend the subsurface boundaries sufficiently far from
the source such that both the tangential electric and normal
magnetic-induction time-derivative components satisfy a ho-
mogeneous Dirichlet boundary condition. The distance of the
mesh boundaries from the source may have to be adapted to
the underlying earth model. If the boundaries are too close
to transmitter or receiver positions, we observe erroneous re-
sults due to grid reflection at late times. This problem becomes
more severe for highly-resistive backgrounds, where the diffus-
ing fields face less attenuation than in a more conductive earth.

An important feature for electromagnetic modeling is the
treatment of the earth-air interface by an upward-continuation
boundary condition, which is used to avoid having to include
the air layer in the FD grid (Macnae, 1984; Oristaglio and
Hohmann, 1984). Otherwise, according to equation 4, approx-
imating the air with a highly resistive layer would require very
small initial time steps. The boundary condition at the earth-
air interface involves the calculation of the horizontal compo-
nents of ḃ in the air in order to advance the electric field at
the earth’s surface. The derivation of the boundary condition
is based on the validity of the vector Laplacian equation for
the field in air (Oristaglio and Hohmann, 1984). This allows
one to apply methods for the continuation of potential fields
(Grant and West, 1965), which are also known from gravity
and magnetic methods (Militzer and Weber, 1984). We carry
out the upward continuation of the magnetic induction time
derivative in the wavenumber domain, employing a parallel
2D spatial fast Fourier transform (FFT) for efficiency.

Initial conditions

A significant advantage of our method is that we require
no simplification in the earth model to initialize the fields. In
contrast, Wang and Hohmann (1993) employ semianalytical
responses of a layered half-space for field initialization. To ini-
tialize the time stepping, we compute the electric field over ar-
bitrary conductivity distributions by decomposing it into two
parts. The first one, called es, is parallel and proportional to the
source distribution js. By extrapolation of the source distribu-
tion onto the FD grid, one can easily obtain es through Ohm’s
law for each grid cell that is influenced by the wire source. This
automatically accounts for arbitrary conductivity distributions
over the mesh.

The second part is given by the dc electric field edc in the
model. Because the dc electric field is curl free, it is deter-
mined by applying the divergence operator to the static form
of equation 1b:

∇ · (σ∇8) = −∇ · js,

where edc can be expressed as the gradient of a potential field8.
Thus, we solve a 3D Poisson problem as common in 3D resistiv-
ity modeling (Dey and Morrison, 1979; Scriba, 1981; Wurmstich
and Morgan, 1994; Spitzer, 1995). Here, a seven-point discrete
approximation to the Poisson operator is used. The numerical
procedure of discretizing this operator on a nonuniform rect-
angular prismatic mesh is described for example by Dey and
Morrison (1979). The equation represents a sparse, diagonally
dominant, positive definite linear system. It can be solved eas-
ily with an efficient preconditioned conjugate-gradient solver.
We use the AZTEC parallel iterative package (Tuminaro et al.,
1999) for solving the dc field equations.

The electric fields are sampled at the time instants
t0, t1, . . . , tn−1, tn, with t0= 0 s and tn= tn−1+1tn−1. The DuFort-
Frankel method requires a history of two time steps for a con-
sistent initialization (Richtmyer and Morton, 1967). We use an
auxiliary field given by the curl of the magnetic field; therefore,
no static magnetic field hdc needs to be calculated. The sam-
pling of the auxiliary field is shifted by −1t/2 relative to the
times of the electric field. Thus, the two initial fields are given
by

e0 = edc+ es, (6a)

∇ × h−
1
2 = σedc+ js. (6b)

Note that equation 6b results from the static form of equa-
tion 1b.

Advance of the electromagnetic field

After field initialization, the time-stepping scheme is carried
out in a leap-frog fashion. It begins with computing the mag-
netic induction time derivative ḃn at time tn= t0 from equa-
tion 1a:

ḃn = −∇ × en. (7)

Note that the generation of a varying field originates from the
change of the electric field es at source shutoff. Both horizontal
components ḃn

x and ḃn
y are calculated using equation 7. In order

to explicitly enforce the divergence-free condition for ḃ, the
vertical component ḃn

z is calculated from a discretization of
equation 5a in the same manner as exemplified for b by Wang
and Hohmann (1993). This routine starts from the lower mesh
boundary, where ḃz= 0, and is now carried out at successively
higher node levels. Then, the horizontal voltages ḃn

x and ḃn
y

above the surface are calculated by upward-continuation of ḃn
z

at the surface. We obtain ḣn over the whole mesh from ḃn, given

ḃn = µḣn,

and form the curl of ḣn. In order to advance the electric field
from tn to tn+1 by equation 1b, the auxiliary quantity ∇ ×hn+ 1

2

remains to be computed for the DuFort-Frankel scheme. It is



1196 Commer and Newman

directly obtained from rearranging the central difference

∇ × ḣn = ∇ × hn+ 1
2 −∇ × hn− 1

2

1tn
. (8)

Note that at the first time step, ∇ ×hn− 1
2 represents the initial

quantity given by equation 6b.
We found that with the curl of the magnetic field derived

from ḃ in this way, the divergence-free condition needs to be
carried over to the curl term. Hence, we also explicitly enforce
the total electric current density to be divergence free:

∇ · (∇ × h) = ∇ · j = 0.

Again, the vertical component of ∇ ×hn+ 1
2 is computed from

the horizontal components, which were obtained using equa-
tion (8). However, in contrast to ḃ, the computation of the ver-
tical component of ∇ ×hn+ 1

2 starts from the top of the mesh
since j vanishes in air and proceeds downwards at successively
lower grid levels. Finally, the electric field is advanced by (Wang
and Hohmann, 1993)

en+1 = 2ε̃ − σ1tn
2ε̃ + σ1tn

en + 21tn
2ε̃ + σ1tn

(
∇ × hn+ 1

2 − j
n+ 1

2
s

)
which results from discretizing equation (1b). Afterwards, the
updating scheme loops back to the calculation of ḃn+1 using
equation (7).

Parallel implementation of the time-stepping

The realistic simulation of complex 3D structures may re-
quire a large number of grid nodes and can quickly push the
limits of a single processor computer in terms of memory needs
and processor speed. To achieve acceptable computation times,
our FD scheme has been designed to run on parallel computers
using the Message Passing Interface (MPI) Standard (Skjellum
et al., 1993). This standard addresses the architecture of dis-
tributed memory systems in an optimal way. Thus, our par-
allelization approach is optimized for a distributed memory
architecture, for example a Beowulf-type Linux cluster.

Given the number of mesh nodes in each dimension and the
number of available processors, we divide the mesh into 3D
subsets representing the different processor domains. It is im-
portant that the mesh subsets are as equal in size as possible.
Otherwise, long idle times result from an unbalanced load and
thus deteriorate the parallel performance. For simplicity, sup-
pose that each processor is assigned to only one grid node in a
3D mesh. The time-stepping scheme requires message passing
across processor boundaries, which alternates with the field up-
dating steps. The fields which are needed in order to complete
the field update at a given node (i, j, k), yet are calculated by
an adjacent processor, are called “ghost” values. Figure 1 illus-
trates both the domain decomposition and the message passing
between node (i, j, k) and its six neighbours.

One starts with the calculation of the horizontal magnetic in-
duction time derivatives from the curl of electric fields by equa-
tion 7. Figure 1a shows that this requires a prior communication
with nodes (i + 1, j, k), (i, j + 1, k), and (i, j, k+ 1) in order to
complete the corresponding elementary electric loops around
the horizontal magnetic fields at node (i, j, k). The communi-
cation prior to the divergence-free correction is illustrated in

Figure 1c. The update of ḃz requires the previously computed
ghosts ḃx and ḃy from nodes (i + 1, j, k) and (i, j + 1, k), respec-
tively, as well as the “lower” ḃz from node (i, j, k+ 1). Note that
the parallel performance of the divergence-free enforcement is
limited to some extent. Because of the spatial limitation of the
procedure to successively higher levels, only the nodes in the
same vertical layer k of processors can compute ḃz at the same
time. Therefore, it is advisable not to introduce too many verti-
cal processor boundaries in order to limit the message passing
overhead.

Now, the upward continuation-procedure of the vertical volt-
age components at the earth’s surface follows. Its parallel im-
plementation is explained in an extra section below. The elec-
tric field update at node (i, j, k) first involves forming the curl
of the magnetic induction time derivative around horizontal
edges where ex and ey are sampled. Therefore, message passing
according to the stencil shown in Figure 1b is carried out. The
passed components of ḃ belong to the ghost nodes (i − 1, j, k),
(i, j − 1, k), and (i, j, k− 1). Then, the horizontal components
of the magnetic field curl (i.e., the total electric current den-
sity j) can be computed using equation 8. Afterwards, nodes
(i − 1, j, k), (i, j − 1, k), and (i, j, k− 1) pass the x-, y-, and
z-components of j, respectively, to node (i, j, k) as also illus-
trated by Figure 1c. This is required for the enforcement of the
divergence-free condition for the current density. Again, it is
carried out in a successive manner, now starting from the upper
mesh boundary.

Parallel upward-continuation procedure

The parallel implementation of the upward-continuation
procedure requires a processor topology which is different
from the one previously described. Moreover, the topology
changes during the procedure since the FFT and its accompa-
nying interpolation routines require field values along an entire
grid line, in either the x or y direction, which need to be as-
signed to a single processor. Hence, the processor topology will
change as the fields are mapped and remapped between the x
and y coordinate directions when carrying out the 2D FFT and
its corresponding inverse.

Figure 2 shows the example of four processors sharing the
fields of the surface layer. Each part of the figure represents a
different step of the procedure. The dividing lines represent the
boundaries within which all nodes are assigned to a single pro-
cessor. Prior to the 2D FFT, a 2D spline interpolation is needed
in order to cast the original distribution of ḃz into an equidis-
tant FFT grid. This requires two data remapping steps. First, the
original chessboardlike distribution of the field (a) among the
processors has to be equisampled along the y-axis. The inter-
polated data are now distributed in a stripelike fashion among
the processors (b). After interpolation along the y-direction,
the data is passed such that the interpolation can be completed
along the x-axis (c) with a corresponding remapping among
the processors. Next, the FFT into the spatial wave domain is
first carried out along the x-direction (d) and afterwards along
the y-direction (e); thus, the complete FFT involves another
remapping. After calculation of the horizontal fields from the
upward-continued vertical ones, the subsequent steps now pro-
ceed in reversed order. One remap is needed by the inverse
FFT and two more for the interpolation of the equally spaced
horizontal magnetic fields back to the original grid (f)–(h).
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Unfortunately, the parallelization of the procedure offers
little opportunity to be accelerated due to the poor scalabil-
ity of the FFT and a high message-passing overhead. Because
the FFT dominates the overall computation time of the up-
ward continuation procedure, the only significant acceleration
can be achieved by using the fact that the TEM field is grad-
ually smoothed in space with increasing time. With a smooth
field, the number of equidistant grid nodes and hence the com-
putation time for the FFT can be reduced significantly. With
our employed FFT algorithms optimized for a number of data
points of order 2n, we choose an appropriate initial regular
grid spacing such that no undersampling occurs. After a pre-
defined time, the spacing can be doubled. Based on a series of
experiments, we found that in the presence of rapidly decaying
fields, the initial grid can be changed to a coarser FFT grid after

Figure 2. Parallel-field upward-continuation scheme involving
remapping, interpolation, and both forward and inverse 2D
FFT along both horizontal dimensions x and y of the sur-
face grid. (a) Initial distribution, (b) remap, y-interpolation,
(c) remap, x–interpolation, (d) FFT(x), (e) remap, FFT(y),
upward continuation, FFT−1(y), remap, FFT−1(x), (f) x-
interpolation, (g) remap, y-interpolation, (h) remap to initial
distribution.

2–3 time decades (starting from the initial time step) without
affecting the accuracy of our solution.

RESULTS

To demonstrate the versatility of our numerical solution,
we have simulated a variety of examples incorporating differ-
ent model complexities, field configurations, and measurement
time ranges. Measurements of both the electric-field and the
magnetic-induction time derivative are simulated, where the
latter will be referred to as ∂t B for brevity. All electric field
responses correspond to the electric field component which is
oriented parallel to the transmitter line. Both horizontal and
vertical components of ∂t B are simulated. The employed FD
meshes are adapted in size to the different purposes. Initial
time steps are set to a value of 0.1 times the right-hand side
of the accuracy condition in equation 4. The FD responses are
verified against solutions of different methods, including ana-
lytical, integral-equation (IE) (Newman et al., 1986), and spec-
tral Lanczos decomposition method (SLDM) (Druskin and
Knizhnerman, 1988). We used up to 12 nodes of a Sun Fire
6800 computer for all shown calculations.

Layered half-space

The first example is typical for the LOTEM method and sim-
ulates the vertical and horizontal response of ∂t B, where the
latter is related to the magnetic field oriented perpendicular
to the transmitter. Figure 3 shows a four-layered earth model
with the resistivity decreasing with depth. The fields are ex-
tracted at distances of 500–5000 m, broadside to the transmitter
(Tx), which is a 1-km-long horizontally grounded wire. Figure 4
shows that both components of the field are in good agreement
with the analytical solution. The model contains 129× 111× 61

Figure 3. Layered model for comparing the FD response with
an analytical solution. The receiver profile is oriented perpen-
dicular to the transmitter direction.
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grid points, with the smallest grid spacing 50 m and the subsur-
face grid boundaries at 20-km distance from the transmitter.
For this example, we can observe effects by reflections off the
mesh boundaries starting at times later than 1 s. However, such
effects can be moved out to later times by further expanding
the mesh boundaries. Note that the horizontal responses of ∂t B
clearly indicate the diffusing fields by a move out in the sign
reversal.

Homogeneous half-space with permeable layer

Next, we calculate the numerical solution for a layered half-
space with homogeneous resistivity (10Ä·m) and a permeable
layer at a depth of 100 m. The relative magnetic permeability of
this layer is 10 and its thickness is 100 m. The unrealistically high
magnetic permeability contrast is chosen in order to achieve
a significant influence of the permeable layer. Similar to the
previous example, responses are calculated broadside to the
transmitter, which is a 100-m-long electric dipole in this case.
Figure 5 shows the results along the receiver profile. The re-
sults of different time stages are transformed from the vertical
∂t B-component into early-time and late-time apparent resistiv-
ities (Petry, 1987). One notes an excellent agreement of the FD
solutions with the analytical solution calculated for the perme-
able layer. At the earliest time of 0.1 ms (Figure 5a), the signal
along the profile is still in the dc state of the transient, except

Figure 4. (a) Vertical and (b) horizontal FD response of ∂t B
in comparison with analytical (dashed line) solutions for the
layered model shown in Figure 3.

for the closest stations, where the decay has already started.
The dc level is not influenced by the permeable layer and thus
shows a response of 10 Ä·m beyond 200 m. For the stations at
more than 400-m distance, the signal at 1 ms is characterized
by a higher amplitude compared to the response arising from a
homogeneous half-space. Hence, the early-time apparent resis-
tivity is above 10 Ä·m. The late-time curve (0.1 s) in Figure 5b
indicates a convergence towards a constant apparent resistivity
along the profile, slightly greater than 10 Ä·m. The analytical
response of a nonpermeable half-space at 0.1 s (dashed line) is
shown to demonstrate the clear effect of the permeable layer.

Conductive 3D block in a homogeneous half-space

The next example compares the electric field FD response
over a 1-Ä·m conductive block in a 200-times more resistive
half-space with an IE solution. Figure 6 shows a plan view of
the field setup and the inhomogeneity, which has a size of 100 m
on an edge, 100 m below the surface. The resulting transient in
Figure 7 corresponds to a receiver position as shown in Figure 6
(Rx) and is transformed to late-time apparent resistivities in or-
der to emphasize the secondary response due to the block. The
fields are excited by a 100-m grounded wire at 150-m distance
from the block’s center. Good agreement can be observed for

Figure 5. Comparison of the (a) early-time and (b) late-time
apparent resistivity calculated from the vertical component of
∂t B at the surface of a homogeneous half-space with a per-
meable layer. The FD solution is compared with an analytical
layered solution.
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both solutions. They show a convergence towards a resistivity
of approximately 280 Ä·m, whereas a response due to the ho-
mogeneous half-space without block (dashed line) converges
towards 200 Ä·m.

Here, the relatively resistive background required an initial
time step of 1t0= 3× 10−7 s in order to avoid a distorting in-
fluence of the fictitious displacement current at early times.
A total of 5894 time steps is required to simulate the shown
time range. This amounts to a computation time of approxi-
mately 6 hours using nine processors, compared to approxi-
mately 5 hours needed by a single processor for the IE solution.

Complex 3D conductor at a vertical contact

Next, synthetic data is calculated from a 3D model similar
to an example presented by Wang and Hohmann (1993), but
with a higher model complexity. The model section in Figure 8
consists of a thin 10-Ä·m conductive layer at the surface and
an underlying laterally divided resistive earth. At the contact
of the 100-Ä·m and 300-Ä·m resistors, a 1-Ä·m conductive 3D
anomaly varies in steps along the profile direction. This struc-

Figure 6. Plan view of the 3D model for comparing with an
IE solution. The conductive block is buried 100 m below the
surface. Rx= receiver.

Figure 7. Late-time apparent resistivities calculated from the
electric field due to the model in Figure 6. The dashed line
corresponds to an analytical half-space response without inho-
mogeneity.

ture, which is 400 m in strike length, reaches a depth of 550 m.
Figures 9a and 9b show the response of the electric field and
the vertical ∂t B-component, respectively, at arbitrarily chosen
locations in comparison with results obtained with SLDM. In

Figure 8. Section view of a complex 3-D anomaly at a vertical
contact. The transmitter direction is parallel to the strike of the
conductor.

Figure 9. Response of the (a) electric field and (b) the vertical
component of ∂t B in comparison with the SLDM (dashed line)
solution for different receiver positions over the 3D model
shown in Figure 8.
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general, the solutions compare well for each receiver location,
with some discrepancies at the earliest delay times of the sta-
tions which are closest to the transmitter. The largest deviation
is observed in the ∂t B-response at x= 200 m. In order to esti-
mate which response achieves a more accurate reproduction of
the exact solution, we compare with an analytical 1D response.
It is calculated from a two-layered model with the overburden
according to Figure 8 and a uniform halfspace of 100Ä·m below
50 m. The comparison with this analytical solution is justified,
because, at the earliest times, the signal near the transmitter can
be expected to be dominated by the overburden and the 100-
Ä·m section. The good agreement with the 1D result indeed
indicates that a higher accuracy is achieved by the FD solu-
tion. The FD solution uses a mesh with 159× 123× 71 points
and a smallest grid spacing of 1min= 10 m, whereas the mesh
for the SLDM solution has 57× 64× 41 points and1min= 25 m.

It may be argued that a refinement of the grid for SLDM
provides for a higher accuracy at the early times. However, as
outlined by Druskin and Knizhnerman (1994), the convergence
of SLDM depends on the grid aspect ratio (given by its smallest
and largest spacings), the conductivity contrast, and frequency.
In general, the grid discretization should be fine for accurate
results at early times and in conductive regions, yet a coarser
grid is required for stability at late times and in more resistive
regions. We found that designing a single grid which makes a
compromise between these complementary requirements may
take place at the expense of accuracy. Therefore, the grid can-
not be arbitrarily refined without slowing the convergence and
thus causing stability problems at late times. We are aware that
the employed grid for SLDM may not be optimal. However,
the good agreement of the sign changes caused by the conduc-
tive dyke, in particular the latest one in Figure 9b, indicates
that the stability requirements for SLDM are well satisfied.

This study exemplifies the large computational effort re-
quired by the explicit time-stepping scheme in comparison with
SLDM. To simulate the shown time range required a total of
3253 time steps with an initial time step of 1t0= 10−7 s. Using
12 processors of the parallel machine requires a total computa-
tion time of 30 ms per grid node, whereas the SLDM solution
requires 3 ms per grid node on a single processor of the same
machine.

Figure 10. Section through the 3D model approximating the
St. Illiers underground gas storage site (Hördt et al., 2000a).
The reservoir extends 2 km in the direction perpendicular to
the drawing plane without variation.

Resistive reservoir structure in a layered host

In contrast to the previous 3D models, this example involves
a more complex resistive anomaly in a layered background. The
earth model shown in Figure 10 was initially designed by Hördt
et al. (2000a) from a priori well log information and represents
an underground gas storage site at St. Illiers, France. At 140-m
depth, the 50-Ä·m sedimentary overburden is interrupted by
a 20-m-thick 15-Ä·m layer. The 10-Ä·m basement, starting at
310-m depth, encompasses the dome-shaped reservoir with the
upper and lower edges at 490 m and 602 m depth, respectively.
It has a strike of 2 km, and the 25-m thick gas-bearing layer is
assumed to have a resistivity of 200Ä·m. In a sensitivity study,
the authors simulated LOTEM responses over a profile cover-
ing the reservoir structure in order to investigate if resistivity
variations at the reservoir margins are detectable. With mag-
netic fields less sensitive to thin resistive structures, the study
was based on electric fields in an axial configuration, that is,
the 50-m-long transmitter points in the profile direction and
the receivers record the transmitter–parallel field.

Here, we first want to compare the FD responses with the
SLDM code, because it was also employed by Hördt et al.
(2000a). Figure 11a shows both inline electric fields for four dif-
ferent receiver positions from the transmitter, which is located

Figure 11. (a) Comparison of the FD (solid line) and SLDM
(dashed line) solution for four receiver points over the St. Illiers
model shown in Figure 10. The shown 1D solution corresponds
to the same model without reservoir. (b) Comparison of FD
solutions at two receiver positions for different resistivities of
the reservoir edge.
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over the left reservoir edge. Although the curve pairs agree
qualitatively, larger quantitative differences exist. In order to
estimate the degree of accuracy of both solutions, we again use
an analytical 1D response at the nearest receiver and assume
that the influence of the reservoir is still small at this distance.
The close agreement with the 1D response (calculated from
the layered model without reservoir) indicates a more accu-
rate FD solution. With an initial time step of 1t0= 10−6 s, a
total of 13 389 time steps is required to simulate the shown
measurement-time interval.

While the meshes of both solutions have a minimum grid size
of 25 m, they differ significantly in how the grid is stretched. The
grid generating the FD solution is divided into 127× 90× 83
nodes. In contrast, the SLDM grid is much coarser at greater
distances from the transmitter and thus consists of only
43× 43× 27 nodes. In this case, the coarse structure of the
SLDM grid is required in order to achieve stability over the
relatively long simulation-time range of more than 3 decades.
Similar to the previous example, due to the issues related to the
convergence of SLDM, we could not refine the mesh without
significantly deteriorating the agreement at late times.

For the mentioned sensitivity study, it is important that the
FD algorithm is capable of resolving the effects of small model
variations. For simulating a lower amount of gas fill, Hördt et al.
(2000a) changed the resistivities of both left and right reservoir
edges (marked as white blocks in Figure 10) to the value of the
surrounding layer. Figure 11b shows our FD responses of both
original and downsized reservoir for the same transmitter posi-
tion as before and two receiver distances. At 1400-m distance,
no significant difference in the results occurs, since transmitter
and receiver are located above the inhomogeneity in such a
way that its edges hardly cause an influence on the fields. How-
ever, at 2000 m, one observes an altered response, indicating
the influence of the right reservoir margin.

CONCLUSIONS

We have presented a versatile time-stepping scheme to solve
for the diffusive Maxwell equations for galvanic source configu-
rations. The parallel code simulates electric-field and magnetic-
field voltage responses for 3D models where both conductivity
and magnetic permeability are functions of postion. Compar-
isons with analytical, IE, and SLDM solutions show that ac-
curate results are obtained over arbitrarily complicated earth
models. The gas reservoir example in particular demonstrates
the scheme’s high degree of accuracy, which is necessary to sim-
ulate response differences caused by a relatively small model
variation. An advantage of our scheme, compared to the SLDM
solution technique, is its robustness in the presence of large
conductivity contrasts and late simulation times. The draw-
back is that accuracy is achieved at the expense of a high
computational-time demand. This problem, inherent to an ex-
plicit time-stepping method, becomes more severe with the
simulation of later times. However, the parallel implementa-
tion allows solutions within reasonable computation times and
thus makes the scheme applicable for the solution of inverse
modeling problems (Commer, 2003; Newman and Commer,
2004).

There also exist strategies worth investigating for improving
the computational efficiency of the scheme. As we put an em-
phasis on accuracy, the employed FD grids may be further op-

timized by minimizing the number of grid points while keeping
an accurate spatial sampling of the diffusing fields at larger dis-
tances from the source. Alumbaugh et al. (1996) mention that
a thorough study of the outer grid design is necessary in order
to avoid slow convergence of their implicit frequency-domain
scheme due to large cell-aspect ratios. Although not crucial
for the stability of our method, an adequate grid-stretching
scheme could help to optimize the FD meshes. In addition,
a material averaging scheme (Moskow et al., 1999) would al-
low a model parameterization that is in principle independent
from the underlying FD grid, thus further relaxing the meshing
constraints.
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